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This paper is concerned with an analysis of the near-tip region of a fluid-driven
fracture propagating in a permeable saturated rock. It focuses on the calculation of
the pore fluid pressure in the tip cavity, the region corresponding to the lag between
the front of the fracturing fluid and the fracture tip. In contrast to impermeable rocks
where the tip cavity can be considered to be at zero pressure, the fluid pressure in
the tip cavity is here unknown and not uniform as exchange of pore fluid between
the cavity and the porous medium and flow of pore fluid within the cavity is taking
place. Solution of the fluid pressure in the tip region requires therefore simultaneous
consideration of fracture mechanics (for the aperture of the tip cavity), diffusion
theory for the movement of fluid within the porous medium, and viscous flow
along the crack. Construction of such a solution within the framework of some
simplifying assumptions is the main objective of this paper. It is shown that the
problem depends, in general, upon two numbers with the meaning of a permeability
and a propagation velocity. For the asymptotic case of large propagation speed, these
two numbers merge into a single parameter, while the solution becomes independent
of the propagation velocity in the limit of small velocity. The particular case of large
velocity is solved analytically, while both the general and the small velocity cases
are computed numerically but with different techniques. The paper concludes with a
comprehensive analysis of numerical results.

1. Introduction
Fractures that are driven by a viscous fluid represent a particular class of tensile

fractures. This mode of tensile fracture propagation takes place in hydraulic fracturing,
a method widely used in the petroleum industry to stimulate underground reservoirs
of hydrocarbons, in the formation of intrusive dykes in the earth’s crust, and in the
transport of magma in the lithosphere by means of fractures. The range of parameters
characterizing these problems could be widely different, however. For example, dykes
have typically a length L of order 103 to 104 m, a width w of order 1 to 10 m, with the
viscosity µf of the basalts and rhyolites during formation of the dykes estimated to
be of the order of 10 to 102 Pa s and 105 to 108 Pa s, respectively. In contrast, hydraulic
fractures driven by injection of a viscous fluid in a wellbore would be described by L

in the range of 10 to 102 m, w of order 10−3 to 10−2 m, and µf varying from 10−1 to
1 Pa s. Furthermore, the permeability of the host rock could vary over a large range
of magnitudes, from 10−9 to 1 Darcy.
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Following the seminal paper of Kristianovic & Zheltov (1955), numerous publi-
cations have tackled the problem of fluid-driven fractures with various degrees of
approximation (see e.g. Barenblatt 1962; Perkins & Kern 1961; Nordgren 1972; Abé,
Mura & Keer 1976; Geerstma & Haafkens 1979; Spence & Sharp 1985; Spence &
Turcotte 1985; Lister 1990; Rubin 1995; Papanastasiou 1997; Carbonell, Desroches &
Detournay 1999; Garagash 2000; Savitski & Detournay 2001; Garagash & Detournay
2002; Adachi & Detournay 2002; Adachi, Detournay & Carbonell 2003; for some of
the more analytical contributions). The main difficulty in solving such a problem arises
from having to deal simultaneously with a non-local relationship between the fracture
opening and the fluid pressure, a nonlinear equation describing the flow of fluid with
the crack, and, in the case of a permeable medium, a time-dependent equation that
governs the exchange of fluid between the fracture and the rock. Furthermore, it has
also recently been recognized (Spence & Sharp 1985; Lister 1990; Desroches et al.
1994; Garagash & Detournay 2000; Detournay, Adachi & Garagash 2002) that the
handling of the region near the fracture tip poses special challenges, owing to the
nature of the boundary conditions in the tip region and a rapid change of the fluid
pressure, which both affect the overall solution.

In an impermeable medium, the structure of the near-tip solution is now understood,
at least within the range of applicability of linear elastic fracture mechanics and
lubrication theory. This solution is characterized by the existence of a lag between
the fracturing fluid and the crack tip, as a weak negative singularity in the fluid
pressure would otherwise exist if the fluid were allowed to reach the fracture tip. In
impermeable rock, the tip cavity is filled with fluid vapours or by exsolved volatiles
which can generally be considered to be at zero pressure (as the vapour pressure can
usually be assumed to be negligible compared to the reference in situ stress). The
size of the lag between the fracturing fluid front and the advancing fracture tip is
a priori unknown and part of the solution (Lister 1990; Garagash & Detournay 2000).
At intermediate distances from the tip (i.e. at distances large compared to the tip
cavity size, yet small compared with the overall dimension of the fracture – assuming
that such a range exists), the fluid pressure and fracture opening is given by an
intermediate asymptote (Garagash & Detournay 2000). This intermediate asymptote
is a singular solution, constructed by assuming that the fluid reaches the tip of a
fracture propagating in a zero toughness solid (Spence & Sharp 1985; Lister 1990;
Desroches et al. 1994). Existence of this intermediate region, which is characterized
by large fluid pressure gradient and large dissipation of energy in the fluid, actually
corresponds to a set of conditions for which the global solution (and in particular the
fracture length, the fluid pressure and crack opening at the fracture inlet) is insensitive
to the details of the tip solution.

This paper is concerned with the near-tip analysis of a fluid-driven fracture
propagating in a permeable saturated rock. It focuses on the calculation of the
fluid pressure in the tip cavity, which is filled by pore fluid. As in impermeable rocks,
the front of the fracturing fluid lags behind the fracture tip (as it would otherwise
cause a weak singularity in the fracturing fluid pressure). However, in contrast to
impermeable rocks where the tip cavity can be considered to be at zero pressure,
the fluid pressure in the tip cavity is now unknown and furthermore not uniform, as
exchange of pore fluid between the cavity and the porous medium, and flow of pore
fluid within the cavity is taking place. Indeed, pore fluid is drawn in, by suction, at the
tip of the advancing fracture, and is reinjected to the porous medium behind the tip,
near the interface between the two fluids. (Pore fluid must necessarily be returning
to the porous rock from the cavity, as it would otherwise cause an increase of the lag
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between the fracturing fluid and the tip of the fracture, which is clearly inconsistent
with the assumption of stationarity.)

Solution of the pressure field within the cavity requires therefore simultaneous
consideration of fracture mechanics (for the aperture of the tip cavity), diffusion
theory for the movement of fluid within the porous medium, and viscous flow along
the crack. Construction of such a solution within the framework of some simplifying
assumptions is the main objective of this paper. This solution should be viewed
as providing the appropriate tip conditions when considering either the large-scale
problem or at least the intermediate scale which could be treated by analysing the
propagation of a semi-infinite fracture.

Several authors (among them Geerstma & de Klerk 1969; Zazovskyi & Panko
1978; Nilson 1988; Detournay, Cheng & Mclennan 1990; Rubin 1993; Gordeyev
1993; Lenoach 1995) have considered the propagation of a fluid-driven fracture in
permeable rocks. However, the tip cavity, which is the focus of this paper, appears to
have been analysed only by Rubin (1993) in the context of permeable rocks. In that
paper, the fluid pressure in the tip cavity is assumed to be uniform and given by the
undrained pore pressure computed in the rock at the tip of the advancing fracture,
assuming a Barenblatt-type process zone. Also, the exchange of fluid flow between
the cavity and the rock is taken to be ‘unidirectional’, with the fluid flowing into the
tip cavity.

This paper is organized as follows. After defining the specific problem to be
solved here, the governing equations are presented. The problem is then reformulated
in dimensionless form, following the introduction of lengthscales and characteristic
pressure and velocity. It is shown that the problem depends in general upon two
dimensionless numbers with the meaning of a permeability and a propagation velocity.
However, these two numbers merge into a single parameter for the asymptotic case of
large propagation speed, while the solution becomes independent of the propagation
velocity, in the limit of small velocity. The particular case of large velocity is solved
analytically, whereas both the general and the small velocity case are computed
numerically but with different techniques. Finally, numerical results are presented and
discussed.

2. Problem formulation
2.1. Problem definition and assumptions

The problem of the tip of a fluid-driven fracture, propagating at a speed V in a
permeable rock with a far-field pore pressure po, is sketched in figure 1. The tip
region is characterized by the existence of a cavity of length λ which separates the
front of the fracturing fluid from the tip of the advancing fracture. This cavity is filled
by pore fluid which has been sucked in from the permeable saturated rock. Fluid is
circulating between the cavity and the rock. The governing equations are formulated
in the moving coordinates system (x, y), with the origin centred on the crack tip and
with the x-axis pointing inside the fracture, see figure 1. A fixed coordinates system
(X, Y ) is also introduced: x = X + V t and y =Y.

The main objective of this analysis is to calculate the fluid pressure distribution in
the tip cavity (in particular the pressure at the interface between the two fluids) as a
function of the tip velocity V , the cavity length λ, the far-field pore pressure po and
several other mechanical parameters characterizing the fluid and the rock.

The analysis is performed under the following assumptions.
(i) The fracture propagates in a permeable linear elastic solid.
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Figure 1. Fluid-driven crack with the near-tip cavity.

(ii) The problem is stationary, i.e. the tip velocity V and the tip cavity length λ
remains constant during propagation.

(iii) The problem of the tip region is treated as two-dimensional (plane strain),
which is justifiable under the conditions that the length of the cavity is much smaller
than the radius of curvature of the fracture edge.

(iv) The cavity lies entirely within the region dominated by the singularity of linear
elastic fracture mechanics; this implies that the aperture of the tip cavity follows a
linear square root variation from the tip.

(v) The pore pressure field in the permeable rock is governed by the homogeneous
diffusion equation. Thus, the poroelastic coupling between solid deformation and pore
fluid diffusion, as is accounted for in the theory of poroelasticity (Biot 1941; Rice &
Cleary 1976; Detournay & Cheng 1993) and manifested by a inhomogeneous term in
the pore pressure diffusion equation, is neglected here.

(vi) The pore pressure perturbation associated with leak-off of the fracturing fluid
behind the tip cavity is not influencing the circulation of pore fluid in and out of
the tip cavity. In other words, the fracture wall behind the cavity tip is treated as
impermeable, from the point of view of modelling the diffusion of pore pressure
in the vicinity of the tip region. The assumption of an impermeable fracture wall
behind the tip cavity is an excellent approximation under conditions where the depth
of penetration of the fracturing fluid in the fracture wall, in the region where the
pore pressure is perturbed by the tip cavity, is indeed very small compared to the
lengthscales characterizing the tip problem. This assumption can generally be justified
by noting that the viscosity of the fracturing fluid is typically at least two orders of
magnitude larger than that of the pore fluid in the context of the stimulation of oil
wells (not accounting for the ‘cake-building’ property of these fluids) and many more
orders of magnitude more in the case of magma-driven fractures (dykes).

(vii) The flow of fluid within the tip cavity is modelled by the lubrication equations,
modified to take into account exchange of pore fluid between the tip cavity and the
permeable rock. The fluid in the cavity is treated as incompressible.

(viii) A sharp interface between the pore fluid and the fracturing fluid exists.

2.2. Governing equations

The governing equations involve the following main quantities: the crack opening
w(x), the fluid pressure in the fracture p(x), the flux discontinuity across the fracture
g(x), and the flow rate inside the crack q(x) per unit extent of the crack in the
direction perpendicular to the (X, Y )-plane. These quantities do not depend on time t ,



The tip region of a fluid-driven fracture in a permeable elastic solid 5

in view of the stationarity assumption; also they need to be defined only on the
interval 0< x < λ, corresponding to the tip cavity. The flux discontinuity g(x) is taken
as positive if fluid is leaving the fracture (g can thus be interpreted as a source density
outside the fracture) and q(x) is an ‘absolute’ flow rate defined with respect to the
fixed coordinate system (X, Y ); q(x) is positive if the flux is in the same direction as
the x-axis (or X-axis).

The formulation of this problem also requires us to introduce the pore pressure
field p(x, y); the field p(x, y) takes the constant value po at infinity and is equal
to the fluid pressure in the tip cavity, i.e. p(x, 0) = p(x), 0 � x � λ (use of different
symbols to differentiate between the fluid pressure in the fracture and the interstitial
fluid pressure in the porous medium is not deemed necessary).

The mathematical model consists of equations from linear elastic fracture mechanics
(LEFM), diffusion theory and lubrication theory, which describe the three coupled
processes: fracturing of the medium, fluid flow inside the tip cavity and diffusion of
pore fluid in the surrounding porous medium, respectively.

2.2.1. Fracture propagation

Linear elastic fracture mechanics (LEFM) provides a description of the first process.
Within the framework of LEFM, the Griffith (1921) energy criterion of fracture
propagation can be expressed in terms of the strength of the inverse square root stress
singularity arising at the tip (Irwin 1957). The strength of this singularity, denoted as
the stress intensity factor KI (with dimension [KI ] = FL−3/2), is an integral measure of
the loading on the body containing the crack. The condition of continuous quasi-static
propagation of a fracture in mobile equilibrium can then be expressed as

KI = KIc, (2.1)

where KIc is the fracture toughness, a material parameter which is related to the
Griffith surface energy. An integral relation between the crack aperture w and the net
loading on the fracture is provided by LEFM. The near-tip asymptote of this relation
can be expressed, however, simply in terms of KI (Rice 1968),

w =
4KI

E′

(
2x

π

)1/2

, (2.2)

where E′ is the so-called plane strain modulus, which is related to Young’s modulus
E and Poisson ratio ν by E′ = E/(1 − ν2). Since it is assumed that the tip cavity lies
entirely within the region dominated by the LEFM singularity, it follows from (2.1)
and (2.2) that the aperture of the tip cavity is known.

2.2.2. Lubrication flow in the cavity

The pore fluid flow in the tip cavity (0 < x < λ, y = 0) is assumed to be governed by
the lubrication theory for an incompressible fluid (Batchelor 1967). The lubrication
equations in the fixed coordinate system consist of the one-dimensional continuity
equation

∂w

∂t
+

∂q

∂X
= −g, (2.3)

and Poiseuille law

q = − w3

12µ

∂p

∂X
, (2.4)
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where µ is the dynamic viscosity of the pore fluid. The right-hand side in (2.3) accounts
for fluid exchange between the cavity and the porous rock. Under the assumption
of stationarity, lubrication equations (2.3)–(2.4) in the moving coordinate system are
given by

V
dw

dx
+

dq

dx
= −g, q = − w3

12µ

dp

dx
. (2.5)

Boundary conditions on the flow rate q at both ends of the tip cavity can be derived
as follows. At the tip of the fracture, the flow rate must necessarily vanish since the
width of the channel becomes zero (although the average fluid velocity q/w at the
tip does not necessarily vanish)

q =0 at x = 0. (2.6)

Note that the non-vanishing of q at the fracture tip would imply, in view of (2.1)–(2.2)
and (2.4), an inverse square root singularity in the fluid pressure, which is incompatible
with the equations of either linear fracture mechanics or diffusion theory. A condition
on q at x = λ can be deduced from the assumption of a sharp interface between the
fracturing and the pore fluid and the condition of stationarity

q = −V w at x = λ. (2.7)

It is also worth noting that integration of the continuity equation (2.3) over the tip
cavity, taking into account the two boundary conditions (2.6) and (2.7), yields

∫ λ

0

g(x) dx =0. (2.8)

This equation, which could have been deduced directly from the stationarity condition,
expresses that the total volume of (incompressible) fluid in the cavity is conserved or,
in other words, that the total rate of fluid volume entering/leaving the tip cavity is
zero.

2.2.3. Pore fluid diffusion around the cavity

Finally, consider the equations describing the evolution of the pore fluid pressure in
the porous medium surrounding the tip cavity (Bear 1988). These equations (presented
in the fixed coordinate system) are given by the continuity equation for the pore fluid,
Darcy law and a constitutive relation

∂ζ

∂t
= −∇ · q + ω,

q = −(k/µ)∇p,

ζ = Sp,




(2.9)

where ζ is the variation of fluid content per unit volume of the porous medium, q
is the specific discharge vector, and ω is the source/sink term. Also, k is the intrinsic
permeability of the medium and S is the storage coefficient. Equations (2.9) can be
combined to yield a diffusion equation for the pore pressure p

∂p

∂t
= c∇2p +

µc

k
ω, (2.10)

where c = k/µS is the diffusivity.
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Under the stationarity assumption, (2.10) transforms into a Helmholtz equation in
the moving coordinate system (x, y)

c∇2p − V
∂p

∂x
= −µc

k
ω. (2.11)

The inhomogeneous term ω in (2.11) corresponds to the fluid flux discontinuity across
the tip cavity

ω(x, y) = δ(y)

∫ λ

0

g(u) δ(x − u) du, (2.12)

where δ is the Dirac delta function.
The boundary conditions for (2.11) are given by p = p0 at infinity and by continuity

between the pore pressure and the cavity pressure (along 0 � x � λ, y = 0), as well
as continuity of the flux through the common function g(x). The pore pressure field
is symmetric with respect to the x-axis, and therefore consistent with the no-flux
boundary condition postulated along the fracture outside the lag region (∂p/∂y =0
along y = 0, with x < 0 or x > λ).

2.2.4. Behaviour of pressure near the fracture tip

The nature of the fluid pressure solution near the fracture tip is constrained by a
set of equations, obtained by considering linear elastic fracture mechanics, lubrication
theory, and diffusion. In particular, the solution must be characterized by a finite rate
of the energy expended (i) in the creation of new crack surfaces, (ii) by lubrication
flow in the tip cavity, and (iii) by fluid flow in the porous rock.

The weaker constraint arises from linear elastic fracture mechanics, as the fluid
pressure consistent with the crack aperture asymptote (2.2) can in principle be singular
at the tip, as long as the singularity of p(x) is weaker than x−1/2. (The asymptote
(2.2) reflects a finite rate of energy dissipated by crack propagation in the rock.)
Nevertheless, considerations from lubrication theory further limit the admissible
singularity of p(x). In the absence of any exchange of fluid between the tip cavity and
the rock, the lubrication equations (2.5), combined with the elastic asymptote (2.2),
imply that the fluid pressure has a logarithmic singularity. Any pressure singularity
is, however, precluded if the rock is permeable and diffusion of pore fluid is taking
place. Indeed, a singularity in the fluid pressure would then cause an infinite rate of
energy dissipation by diffusion of fluid in the porous rock.

2.2.5. Final set of equations

Formulation of the diffusion problem can be reduced to an integral equation
involving only the pressure p(x) in the cavity and the flux discontinuity g(x), by
making use of the moving source solution (Carslaw & Jaeger 1959). This solution
of (2.11) with ω = Qδ(x)δ(y) (representing a fluid source at the origin of the moving
coordinates system and characterized by a constant injection flow rate Q) is given by

p =
µQ

2πk
exp

(
V x

2c

)
K0

[
V

2c
(x2 + y2)1/2

]
, (2.13)

where K0 is the modified Bessel function of the second kind (Abramowitz & Stegun
1964). The solution of the diffusion problem with the boundary conditions at infinity
and along the tip cavity can then be obtained by integrating the source solution, thus
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yielding the integral equation

p − p0 =
µ

2πk

∫ λ

0

g(u) exp

[
V (x − u)

2c

]
K0

[
V |x − u|

2c

]
du. (2.14)

This equation together with the differential equation

d

dx

(
x3/2 dp

dx

)
− 3πµV E′2

16K2
Ic

1

x1/2
=

(
π

2

)1/2
3πµE′3

32K3
Ic

g, (2.15)

obtained by combining (2.1)–(2.2), and (2.5) and the boundary conditions

x3/2 dp

dx
= 0 at x = 0, (2.16)

8λK2
Ic

3πµV E′2
dp

dx
= 1 at x = λ, (2.17)

constitute a closed system to be solved for the two functions p(x) and g(x), which
are defined for 0 � x � λ. The boundary condition at x =0 is automatically satisfied
if p is a regular function. Note that (2.14) and (2.15) can be combined into a single
integro-differential equation.

2.3. Scaling and dimensionless formulation

As formulated, the tip problem depends on six dimensional parameters which are: the
propagation velocity V , the length of the lag zone λ, the ratio of the rock toughness
KIc to the modulus E′, the hydraulic diffusivity c, the permeability k and the dynamic
viscosity µ (the far-field pore pressure p0 entering only as a reference value for the
fluid pressure). Thus, according to dimensional analysis, the problem depends at most
on three dimensionless parameters. However, appropriate scaling of the governing
equations shows that the solution depends upon two numbers (and not three), and
upon a single one in the asymptotic cases of large or small velocities.

First, it is convenient to introduce two lengthscales �k and �d defined as follows

�k =
8

π

(
KIc

E′

)2

, �d =
c

V
. (2.18)

The lengthscale �k is associated with the fracture mechanics aspect of this problem (the
fracture aperture is of order �k at a distance �k from the tip), while the lengthscale �d

characterizes the diffusion aspect. (The lengthscale �d gives a measure of the dimension
of the region where the pore pressure is significantly perturbed from the initial
value p0.)

We now introduce several dimensionless quantities: the coordinates (ξ, ζ )

ξ = x/λ, ζ = y/λ, (2.19)

the fracture opening Ω(ξ ), the fluid pressure Π (ξ ) (or the pore pressure Π (ξ, ζ )), the
flux discontinuity γ (ξ ), and the flow rate Ψ (ξ ) which are defined as follows

Ω =
w

w∗
, Π =

p − p0

p∗
, Ψ =

q

q∗
, γ =

g

g∗
. (2.20)

The characteristic opening in the scaling (2.20) is selected as the maximum tip cavity
opening (2.1)–(2.2) taking place at the fluid interface, w∗ = w(λ),

w∗ = 4

(
2

π

)1/2
KIcλ

1/2

E′ = 2(�kλ)
1/2. (2.21)
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The rest of the characteristic quantities in (2.20) are given by

p∗ =
3π

8

(
E′

KIc

)2

µV = 12
µV λ

w2
∗

= 3
µV

�k

, (2.22)

q∗ = 4

(
2

π

)1/2
KIcλ

1/2V

E′ = w∗V = 2(�kλ)
1/2V, (2.23)

g∗ = 4

(
2

π

)1/2
KIcV

E′λ
=

w∗V

λ
= 2

(
�k

λ

)1/2

V. (2.24)

In scaled form, the governing equations are then written as

Ω = ξ 1/2, (2.25)

Ψ = −Ω3 dΠ

dξ
, (2.26)

dΨ

dξ
+

dΩ

dξ
= −γ, (2.27)

Π =

∫ 1

0

Πs(ξ − u)γ (u) du, (2.28)

and the boundary conditions as Ψ (0) = 0 and Ψ (1) = −1. The kernel Πs(ξ ) in (2.28)
is given by

Πs(ξ ) =
1

2π�
exp

(
vξ

2

)
K0

(
v|ξ |
2

)
, (2.29)

where the dimensionless parameters � and v are respectively defined as

� =
3π3/2

211/2

kE′3

λ1/2K3
Ic

= 12
kλ

w3
∗

=
3

2

k

λ1/2�
3/2
k

, (2.30)

v =
V λ

c
=

λ

�d

. (2.31)

The solution of the tip problem depends therefore only on two numbers, � and v,
which take the simple interpretation of a scaled permeability and a scaled tip velocity,
respectively. The number v, which corresponds to the ratio of the cavity size to the
diffusive lengthscale, can also be interpreted as a Péclet number.

The solution is characterized by an inverse square root singularity of the flux
discontinuity at the tip. It can indeed be deduced from the fluid continuity equation,
that the inverse square root singularity introduced by dΩ/dξ at the tip must neces-
sarily be balanced by γ , since Ψ must behave near ξ = 0 as ξα with α > 1/2 to
prevent any singularity in Π , according to (2.26); hence, γ ∼ −ξ−1/2 as ξ → 0.

It is also useful to introduce the integral Υ (ξ ) of the flux discontinuity γ across the
crack tip

Υ =

∫ ξ

0

γ (u) du. (2.32)

The function Υ (ξ ) gives the outflow rate of fluid volume exchanged between the
cavity and the porous medium from the tip to a point ξ . Note that Υ (ξ ) � 0 with
Υ (0) = Υ (1) = 0 and that its minimum value Υmin � −1. Indeed, integration of the
continuity equation (2.27) yields

Υ = −Ω − Ψ. (2.33)



10 E. Detournay and D. I. Garagash

Finally, the system of equations can be reduced to a single integro-differential
equation in Π , accounting for both the diffusion in the porous medium and the fluid
flow in the cavity; this equation is obtained by substituting into (2.28) the expression
for the source density γ given by the lubrication equation

d

dξ

(
ξ 3/2 dΠ

dξ

)
− 1

2ξ 1/2
= γ, (2.34)

(which is derived from the continuity equation (2.27) and Poiseuille law (2.26)). The
resulting equation∫ 1

0

Πs(ξ − u; �, v)

[
d

du

(
u3/2 dΠ

du

)
− 1

2u1/2

]
du = Π (ξ ), (2.35)

together with the boundary condition (2.17)

dΠ

dξ
= 1 at ξ = 1, (2.36)

completely define the non-singular fluid pressure in the fracture tip cavity. (As noted
earlier, the non-singularity of the pressure at the tip automatically satisfies the zero
flow rate condition (2.16) at the tip.)

Once the fluid pressure in the cavity Π (ξ ) has been solved, the flow rate Ψ

and flux discontinuity γ are determined from (2.26) and (2.27). With γ known, the
pore pressure field Π (ξ, ζ ) in the porous medium can then be computed from the
convolution integral

Π =

∫ 1

0

Πg(ξ − u, ζ ; �, v)γ (u) du, (2.37)

where

Πg(ξ, ζ ; �, v) =
1

2π�
exp

(
1
2
vξ

)
K0

[
1
2
v(ξ 2 + ζ 2)1/2

]
. (2.38)

Since there is no net fluid exchanged between the tip cavity and the porous medium,
the far-field pore pressure perturbation corresponds to an effective dipole located at
the tip and oriented along the ξ -axis with the strength S of the dipole given by

S =

∫ 1

0

Υ (ξ ) dξ. (2.39)

Note that since the net fluid exchange is zero, dipole strength S is equivalent to the

moment of the source density γ along the cavity, i.e. S =
∫ 1

0
(ξ − u)γ (u) du. With the

help of (2.33), (2.25) and (2.26), the dipole strength S can also be expressed in terms
of the dimensionless pressure in the cavity

S = − 2
3

+ Π (1) − 3
2

∫ 1

0

ξ 1/2Π (ξ ) dξ. (2.40)

2.4. Range of parameters

It is of interest to estimate the length scales �k , �d , w∗ and λ, as well as the possible
range of variation of the two governing dimensionless parameters � and v. Typically,
the rock toughness KIc = O(1) MPa m1/2 and the elastic modulus E′ = O(104) MPa.
In contrast, the rock permeability k varies over many orders of magnitude, from
10−21 m2 for shales to 10−12 m2 for permeable sandstones; the corresponding diffusivity
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Dykes HF

E′ (GPa) 30 30
KIc (MPam1/2) 1 1
µf (Pa s) 10 0.1
σ0 (MPa) 100 10
V (m s−1) 10 1

�k (m) 3 × 10−9 3 × 10−9

λ (m) 1 0.1
w∗ (m) 10−4 3 × 10−5

k (m2) 10−18 10−21 − 10−12

c (m2 s−1) 10−6 10−7 − 1

�d (m) 10−7 10−7 − 1
� 10−5 10−7 − 102

v 107 106 − 10−1

η 10−1.5 10−4 − 101.5

Table 1. Estimates of the lag λ, (2.41), length scales �k , �d , (2.18), and w∗, (2.21); dimensionless
permeability �, (2.30), dimensionless velocity v, (2.31), and dimensionless permeability in the
large velocity case, η, (5.3), corresponding to plausible values/ranges of rock and fracturing
fluid material constants, and confining stress levels and propagation velocities of dykes and
hydraulic fractures (HF).

c varying from 10−7 m2 s−1 to 1 m2 s−1. In the case of dyke propagation, typical values
of the permeability and diffusivity of the host granitic or basaltic rock are 10−18 m2

and 10−6 m2 s−1, respectively.
Apart from the above material parameters, the length of the tip cavity λ and the

fracture propagation velocity V are both functions of the solution for the finite crack
(i.e. the outer solution). In impermeable rocks where the tip cavity is at zero pressure,
λ depends on the outer solution only via the tip velocity V provided that λ is small
compared to the crack dimension. Under these conditions, the solution of a semi-
infinite fluid-driven fracture in an impermeable rock yields the following estimate for
the maximum lag (Garagash & Detournay 2000)

λ � 4µf E′2V

σ 3
0

, (2.41)

where µf is the fracturing fluid viscosity and σ0 is the in situ stress perpendicular to
the fracture plane. Estimates for the fracturing fluid viscosity specific to dykes and
hydraulic fractures were cited in § 1. The confining stress is of order of the lithostatic
pressure, and thus dependent on the depth; typically, σ0 = 10 ∼ 100 MPa. Although
the tip velocity V can readily be computed for simple fracture geometries given the
boundary conditions, it is sufficient here to state that generally V = 0.1 ∼ 10 m s−1.

Table 1 summarizes relevant values of the problem parameters for dykes and for
hydraulic fractures, as well as appropriate ranges for the dimensionless permeability �

and propagation velocity v. This table indicates that the dyke problem is characterized
by a small � (attributable to the large magma viscosity µf and the small permeability
k of the host rock) and by a large v (attributable to the small diffusivity of the host
rock). On the other hand, � and v for hydraulic fractures can vary over many orders
of magnitude, owing mainly to the wide range of permeability of the reservoir rock.
For example, the rocks at the lower end of the permeability interval correspond to
the minimum � and maximum v of the range, whereas rocks at the upper end of the
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permeability interval correspond to the maximum � and minimum v of the range, see
table 1.

Table 1 and the above observations suggest that the large v asymptotic solution is
relevant for the propagation of dykes. The solution in the complete range (small to
large) of v and � is required to represent hydraulic fractures in various rocks.

3. Asymptotic limits for small and large permeability �

It is of interest to identify the two limits of zero and infinite permeability �.
Consider first the limit � → 0. Multiplying (2.28) by � and taking the limit of the
resulting expression for � → 0 shows that the source density is everywhere zero in
the tip cavity, γ ≡ 0. Hence, the limit � =0 corresponds to a situation where there
is no fluid exchanged between the medium and the cavity. This conclusion could
indeed have been deduced by noting that the lower limit of � can be reached for a
material with zero permeability, k = 0. (Although the diffusivity c also goes to zero in
the limit of k = 0, c can always be expressed as c = k/µS, where S is a fluid storage
coefficient; hence � goes to zero as k1/2). Hence, this limiting case corresponds to a
fracture driven in an impermeable rock by two fluids of different viscosities (µf and
µ), with one fluid (µ) confined to a region with extent λ in the fracture tip by the
other fluid (µf ). The pressure in the tip cavity follows from (2.25)–(2.27) with γ ≡ 0

Π (ξ ) = 2(1 − ln 2) + ln ξ. (3.1)

Hence, the interface pressure Π (1) tends towards a finite value in the limit of � = 0

lim
�→0

Π (1) = 2(1 − ln 2). (3.2)

The limit � =0 yields, therefore, a negative logarithmic singularity in the fluid pressure
at the fracture tip. The fluid would then necessarily cavitate in the vicinity of the
tip, and the solution � = 0 is thus clearly inconsistent with the assumption of an
incompressible fluid completely occupying the tip cavity. A consistent solution for the
limiting case of an impermeable rock requires consideration of a lag region between
the fracturing fluid and the tip of the fracture, which is devoid of fluid. (Although the
tip cavity would be filled by vapours from the fracturing fluid, the vapour pressure
could conveniently be considered as zero in comparison with the magnitude of the
in situ stress σ0.) Such a solution that takes into account the existence of a lag of
a priori unknown length can indeed be constructed (Garagash & Detournay 2000).

It is also worth mentioning that a small perturbation of the � = 0 solution is
singular (Kevorkian & Cole 1996), since the source density is infinite at the fracture
tip (γ ∼ −ξ−1/2) for any non-zero �, while it is identically zero for � = 0. Thus, the
structure of the solution in the case of a small but non-zero permeability � is given
by the solution γ = 0 away from the fracture tip, and by a boundary-layer solution
incorporating the singular γ near the fracture tip. As shown later, the source density
has a positive singularity at the interface between the fracturing and cavity fluid, as
well. Thus, the solution for � 	 1 is characterized by boundary layers at both ξ = 0
and ξ =1, which can be viewed as point-sink and point-source on the lengthscale of
the tip cavity, respectively.

Consider next the case where � tends to ∞. Here, the net pressure is identically
zero, Π ≡ 0 according to (2.28)–(2.29). For this limit, the fluid continuity equation
reduces to

Ω(ξ ) + Υ (ξ ) = 0 (3.3)
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everywhere in the cavity except at ξ = 1 (since Ω(1) = 1 and Υ (1) = 0). The degenerated
continuity equation (3.3) reveals a situation where the creation of new space caused by
propagation of the crack is instantaneously filled by fluid flowing from the formation.
In other words, the fluid infiltration velocity consistent with a uniform pressure in
the tip region exactly balances the rate of change of the crack opening. A Dirac
singularity for the flux discontinuity γ must nonetheless necessarily take place at
ξ = 1 in order to enforce the constant fluid volume in the crack tip cavity (hence, the
singularity in the pressure at ξ =1).

4. Asymptotic solution for small velocity v

4.1. Singular integral equation

We first consider the case of small propagation velocity, v 	 1. According to the
definition (2.31) of v, this asymptotic case corresponds to situations where the di-
ffusion length c/V is large compared to the cavity length λ. The integro-differential
equation (2.35) can be simplified for small v by expanding the kernel Πs(ξ − u; �, v)
in v and retaining only the first term of the expansion

Πs(ξ ; �, v) ≈ − 1

2π�

(
ln

v

2
+ ln |ξ |

)
for v 	 1. (4.1)

Since Υ (1) = 0, (2.28) becomes

Π (ξ ) = − 1

2π�

∫ 1

0

ln |ξ − u|γ (u) du. (4.2)

By integrating by parts the integral in (4.2), using the integral Υ (ξ ) of the flux
discontinuity γ across the tip cavity given by (2.32), we obtain a singular integro-
differential equation with a Cauchy kernel

Π (ξ ) =
1

2π�

∫ 1

0

Υ (u)

u − ξ
du (4.3)

with boundary conditions on Υ (ξ ) given by

Υ (0) = Υ (1) = 0. (4.4)

In the limiting case of small velocity, the solution thus depends on the dimensionless
permeability � only.

Following the classical theory of the Cauchy singular integral equation
(Muskhelishvili 1977), (4.3) can be inverted to yield (see Appendix A)

Υ (ξ ) = −2�

π
ξ 1/2(1 − ξ )1/2

∫ 1

0

Π (u)

u1/2(1 − u)1/2

du

u − ξ
, (4.5)

which takes into account (4.4). It can be shown that if the net pressure Π (ξ ) is
finite along the cavity (including the ends), then the integral in (4.5) is a regular
function bounded at the cavity ends. Consequently, the source density γ =dΥ/dξ

has an inverse square root singularity both at the fracture tip ξ = 0 and at the fluid
interface ξ = 1. The source density singularity at the fracture tip has been discussed
earlier for an arbitrary v, while the singularity at the fluid interface, which was shown
to exist for small v, is expected to hold in the case of finite velocities v as well.
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Let us denote the pressure gradient as Ξ (ξ ) = dΠ/dξ . By integrating by parts the
Cauchy integral in (4.5) and using

Υ (ξ ) = ξ 3/2Ξ (ξ ) − ξ 1/2, (4.6)

obtained by integration of (2.34), a Fredholm integral equation in terms of the
pressure gradient Ξ (ξ ) can then be deduced

ξ 3/2 Ξ (ξ ) +
2�

π

∫ 1

0

K(ξ, u) Ξ (u) du = ξ 1/2. (4.7)

In the above, K(ξ, u) denotes the weakly singular kernel

K(ξ, u) = ln

∣∣∣∣u
1/2 + ξ 1/2

u1/2 − ξ 1/2

1 + (1 − u)1/2(1 − ξ )1/2 − u1/2ξ 1/2

1 + (1 − u)1/2(1 − ξ )1/2 + u1/2ξ 1/2

∣∣∣∣ . (4.8)

4.2. Reduction to a system of linear equations

Application of the coordinate transformations

u = cos2 θ, ξ = cos2 ϕ, (4.9)

to (4.7) yields

cos3 ϕ Ξ̄ (ϕ) +
2�

π

∫ π/2

0

sin 2θK̄(ϕ, θ) Ξ̄ (θ) dθ = cosϕ (4.10)

with the notational convention that Ξ̄ (ϕ) = Ξ (cos2 ϕ). The kernel K̄(ϕ, θ) = K(cos2 ϕ,

cos2 θ) is given by the double sine series, see Appendix A

K̄(ϕ, θ) =

∞∑
n=1

2

n
sin 2nϕ sin 2nθ. (4.11)

The sine series of Ῡ (ϕ) = cos3 ϕ Ξ̄ (ϕ)−cos ϕ is obtained by substituting the expansion
(4.11) for K̄(ϕ, θ) in (4.10) and integrating term by term. Using this expansion for
Ῡ (ϕ) in (4.3), transformed according to (4.9), yields the series expansion Π̄ (ϕ). These
two expansions are

Ῡ (ϕ) =

∞∑
n=1

λn sin 2nϕ, (4.12)

Π̄ (ϕ) = − 1

2�

∞∑
n=1

λn cos 2nϕ, (4.13)

with the still unknown coefficients λn given by

λn = −4�

nπ

∫ π/2

0

sin 2θ sin 2nθ Ξ̄ (θ) dθ. (4.14)

The expressions for the overall characteristics of the solution, taken as the net pressure
at the fracture tip and at the fluid interface and the effective dipole strength S, can
be easily deduced from (4.12)–(4.13) as

Π (0) = − 1

2�

∞∑
n=1

(−1)nλn, Π (1) = − 1

2�

∞∑
n=1

λn, S = 1
4
πλ1. (4.15)
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The expression for the source density γ̄ (ϕ) is derived from (4.12) as follows

γ̄ (ϕ) =
dῩ (ϕ)

dϕ

dϕ

dξ
= − 1

sin 2ϕ

∞∑
n=1

2nλn cos 2nϕ. (4.16)

The functions Υ (ξ ), Π (ξ ) and γ (ξ ) are finally deduced from Ῡ (ϕ), Π̄ (ϕ) and γ̄ (ϕ),
through the substitution ϕ = arccos(ξ 1/2). It is seen from (4.16) that the source density
γ (ξ ) has an inverse square root singularity at both ends of the tip cavity

γ � − 1

2ξ 1/2
as ξ → 0, (4.17)

γ � − A

2 (1 − ξ )1/2
as ξ → 1 with A =

∞∑
n=1

2nλn. (4.18)

The infinite system of linear algebraic equations in the unknown coefficients λn is
formulated by substituting the series expression for Ξ̄ (ϕ), derived from (4.13) into the
integral of (4.14). Hence,

∞∑
m=1

[
φnm +

nπ

4�
δnm

]
λm = −ψn, n = 1, . . . , ∞, (4.19)

where δnm is the Kronecker delta, and the coefficients φnm and ψn are given by

φnm =

∫ π/2

0

sin 2θ

cos3 θ
sin 2nθ sin 2mθ dθ, (4.20)

ψn =

∫ π/2

0

sin 2θ

cos2 θ
sin 2nθ dθ. (4.21)

The integrals in (4.20) and (4.21) are known explicitly, hence

φnm =

m+n−1∑
k=0

(
k + 1/4

m + n
− 1

2

)−1

−
|m−n|−1∑

k=0

(
k + 1/4

|m − n| − 1

2

)−1

, (4.22)

ψn = (−1)n+1π. (4.23)

An approximate solution λ
(N)
1 , . . . , λ

(N)
N is sought here by truncating the system

(4.19) to N equations into N unknowns

N∑
m=1

[
φnm +

nπ

4�
δnm

]
λ(N)

m = −ψn, n = 1, . . . , N. (4.24)

Note that this solution satisfies the conditions that for any ε > 0, there exists an
N (�, ε) such that |λ(N)

N | <ε, |λ(N)
i − λ

(M)
i | <ε, and

∑M

i =N |λ(M)
i | <ε for any M > N

and any i in the interval [1, . . . , N ]. Therefore, the truncated system of N (�, ε)

equations (4.24) provides a solution of order ε of the full system (4.19); i.e. λi = λ
(N)
i

for i = 1, . . . , N and λi =0 for i > N .

5. Asymptotic solution for large velocity v

5.1. Closed-form solution

Next, we consider the limiting case of large fracture propagation velocity, v � 1, cor-
responding to cases where the diffusion length c/V is small compared to the cavity
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length λ. The particular integro-differential equation in Π for large v can be derived
from the general integral equation (2.35), see Appendix B for details. Alternatively,
this equation can be derived from ad hoc considerations of so-called linear flow. Using
the asymptotic formula of the Bessel function K0(ζ ) for large ζ , it can be shown that
the convolution integral in (2.28) can be written as

1

2π�

∫ 1

0

exp

(
v(ξ − u)

2

)
K0

(
v|ξ − u|

2

)
γ (u) du ≈ 1

2�
√

πv

∫ ξ

0

γ (u)

(ξ − u)1/2
du for v � 1.

(5.1)

The integral equation (2.35) can thus be reduced to

2

π

∫ ξ

0

d

du

(
u3/2 dΠ

du

)
1

(ξ − u)1/2
du = 1 + ηΠ(ξ ), (5.2)

where

η = 4�

(
v

π

)1/2

=
6k(

π�d�
3
k

)1/2
. (5.3)

The number η is thus the only parameter controlling the solution when v is large.
The merging of the two numbers � and v into the single parameter η, according to
(5.3), is to be expected because the solution should not depend on the cavity length
λ in the limit of linear flow. The range of variation of η is [0, ∞[.

Consider now a solution of the integral equation (5.2) in the form

Π (ξ ) = C +
1

α
ξα, α > − 1

2
, (5.4)

where C and α are unknown constants. The form (5.4) already satisfies the boundary
condition (2.36). Substitution of (5.4) into (5.2) and integration yields

(1 + 2α)Γ
(

1
2

+ α
)

π1/2Γ (1 + α)
ξα = 1 + ηC +

η

α
ξα, (5.5)

where Γ is the Euler gamma function. Matching of terms in (5.5) yields the explicit
value for the unknown constant C and an algebraic equation for the power exponent α

C = −1

η
, (5.6)

η = f (α), (5.7)

where

f (α) =
α(1 + 2α)Γ

(
1
2

+ α
)

π1/2Γ (1 + α)
. (5.8)

It can readily be shown that f (α) ∼ α for α 	 1 and f (α) ∼ 2π−1/2α3/2 for α � 1;
hence,

α ∼ η for η 	 1, (5.9)

α ∼ π1/3

22/3
η2/3 for η � 1. (5.10)

The solution α(η) of (5.7) is plotted in figure 2, together with the two asymptotes
(5.9) and (5.10).
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Figure 2. Pressure exponent α versus number η in log–log scale.

Finally, the solutions for the fluid pressure Π , flow rate Ψ , source density γ , and
integral of the source density Υ take the form

Π =
1

η

(
η

α
ξα − 1

)
, (5.11)

Ψ = −ξα+1/2, (5.12)

γ =
1

2ξ 1/2
[(1 + 2α)ξα − 1], (5.13)

Υ = ξα+1/2 − ξ 1/2, (5.14)

where α = α(η) is the solution of (5.7).
Since α > 0 for η > 0, the fluid pressure in the cavity is always a regular function

bounded everywhere along the cavity. The pressure monotonically increases from the
tip (ξ = 0) to the interface between the cavity and the rest of the crack (ξ = 1) with
the minimum of the pressure reached at the tip Π (0) = −1/η and the maximum at
the interface between the two fluids Π (1) = 1/α − 1/η.

Some other information about the flow of pore fluid in and out of the cavity is
given by the minimum Υmin (corresponding to γ =0) which takes place at ξ = ξ∗ and
is given by

ξ∗ =
1

(1 + 2α)1/α
, (5.15)

and thus

Υmin = −2α

(
1

1 + 2α

)1+1/2α

. (5.16)

So indeed, Υmin decreases from 0 to −1 as α varies from 0 to ∞ (note that ξ∗ varies
from e−2 to 1). To characterize this dipole we compute its strength S according
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to (2.39),

S = − 4α

3(3 + 2α)
. (5.17)

5.2. Asymptotic limits for small and large η

First, it is of interest to introduce another characteristic pressure p∗ defined as

p∗ =
p∗

η
= (π�d�k)

1/2 µV

2k
. (5.18)

and the alternative pressure scaling Π

Π =
p − p0

p∗
. (5.19)

The solution for the fluid pressure in the cavity can thus be rewritten as

Π =
η

α
ξa − 1. (5.20)

According to (5.11), the dimensionless pressure at the fracture tip is Π (0) = −1;
translated into absolute terms, this means that the pressure at the tip, ptip = p0 − p∗.
Obviously, the model applies as long as ptip > 0 (pragmatically), i.e. p∗ <p0, as
otherwise cavitation would take place.

It can be readily established from the relation of the parameter η to the
dimensionless permeability �, (5.3), and the form of the large v solution, that
asymptotic limits of the latter for small and large η are identical to the small and
large � limiting solutions discussed above. However, consideration of the solution in
the alternative pressure scaling provides additional information about the solution
structure in the limit η → ∞. Indeed, in the original pressure scaling, Π vanishes
everywhere in the tip cavity as η → ∞. However, the rescaled fluid cavity pressure
Π (ξ ) tends towards the constant tip pressure Π = −1 in the limit η → ∞, except
at the fluid interface ξ =1 where the pressure becomes singular (Π (1) → ∞ as η1/3).
However, it does not appear that this limit can be realistically approached, in view of
the admissible range of variations of the basic parameters, and under the condition
that v is large (see also table 1).

6. General solution for arbitrary velocity v

To find the solution for an arbitrary v, we express the equations in terms of the
source density γ. Consider (4.6) which is here written as

ξ 3/2 dΠ

dξ
= ξ 1/2 +

∫ ξ

0

γ (u) du. (6.1)

As discussed previously, γ (ξ ) has an inverse square root singularity at the tip (which
can be confirmed from an examination of (6.1)); hence, we represent γ (ξ ) as

γ = − 1
2
ξ−1/2 + γr, γr = O

(
ξ−1/2+α

)
, α > 0, (6.2)

where γr (ξ ) is a source density ‘regularized’ at the fracture tip. (According to the
preceding discussion of the small v case, γr (ξ ) may still have a singularity at the
fluid interface ξ = 1). Substituting (6.2) into (6.1) and integrating with respect to ξ ,
we arrive at the expression of the pressure inside the cavity Π in terms of γr (ξ )

Π = Π (0) − 2

ξ 1/2

∫ ξ

0

γr (u) du + 2

∫ ξ

0

γr (u)

u1/2
du, (6.3)
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Figure 3. Variation of (a) the source density γ and (b) the fluid pressure Π along the cavity
for v = 10−2 and various � = 10−3, · · · , 102. The numerical solution (based on the algorithm for
arbitrary v) and small v asymptotic solution are shown by solid and dashed lines, respectively.
(Note that for a given choice of v = 10−2 the two solutions are practically identical).

where Π (0) is the value of the pressure at the tip. An integral equation in γr , involving
also the unknown tip pressure Π (0) can then be deduced from (2.28) and (6.3),

Πt (ξ ) +

∫ 1

0

Πs(ξ − u, 0)γr (u) du = Π (0) − 2ξ−1/2

∫ ξ

0

γr (u) du + 2

∫ ξ

0

u−1/2γr (u) du,

(6.4)

where Πt (ξ ) is the part of the integral in (2.28) corresponding to the singularity of γ

at the tip

Πt (ξ ) = − 1
2

∫ 1

0

Πs(ξ − u, 0)u−1/2 du. (6.5)

Equation (6.4) is complemented by an integral condition which results from (2.8)∫ 1

0

γr (ξ ) dξ = 1. (6.6)

Summarizing, the integral equation (6.4) with the integral constraint (6.6) completely
define the ‘regularized’ source density γr (ξ ) and the tip pressure Π (0) as a function
of the two dimensionless numbers v and �. (Equivalently, the dimensionless cavity
fluid pressure Π (ξ ) can be solved from the integral equation (2.35) and the boundary
condition (2.36)). This problem is solved numerically, see Appendix C for details of
the method used. Once this solution is found, γ (ξ ) and Π (ξ ) are computed using (6.2)
and (6.3), respectively.

7. Numerical results
7.1. Arbitrary velocity solution and asymptotic solutions

First, we discuss the numerical solution for the source density γ and net-pressure
Π along the cavity obtained with the numerical algorithm for arbitrary velocity v

and compare this numerical solution to the small and large v asymptotic solutions.
Figures 3, 4 and 5 show the distribution of the source density γ and the pressure
Π for v = 10−2, 102 and 104, and various values of � ranging from 10−3 to 102. The
numerical solution computed with the algorithm for arbitrary v is shown by solid



20 E. Detournay and D. I. Garagash

(a) (b)

0

2

4

–2

–4

γ

0 0.2 0.4 0.6 0.8 1.0

ξ

0

2

–2

–3

1

–1

Π

0 0.2 0.4 0.6 0.8 1.0

ξ

= 10–3

= 102

= 1

= 10, 102

= 10–3

Figure 4. Variation of (a) the source density γ and (b) the fluid pressure Π along the cavity
for v = 102 and various � = 10−3, · · · , 102. The numerical solution for arbitrary v and the large
velocity asymptotic solution are shown by solid and dashed lines, respectively.
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Figure 5. Variation of (a) the source density γ and (b) the fluid pressure Π along the cavity
for v = 104 and various � =10−3, · · · , 102. The numerical solution for arbitrary v is identical
to the large v asymptotic solution.

lines, whereas the asymptotic solutions are shown in dashed lines in these figures.
(Calculations with the general algorithm were performed with N = 300 collocation
points, while the computations with the small v algorithm were carried out with
N = 400; the large v asymptote is computed for the set of values of the parameter
η = 4�/(πv)1/2 corresponding to v equal either to 102 or to 104, and the given set
of � values). Figure 3 shows hardly any differences between the small v asymptotic
solution (dashed lines) and the solution for v = 10−2 (solid lines). Similarly, the large
v asymptotic solution is virtually identical to the numerical solution v = 104, as can
be seen in figure 5. The large v asymptotic solution is a very good approximation
for v as low as 102, except for the source density near the fluid interface ξ = 1
(see figure 4). Although the numerical solution suggests a singular behaviour for
γ at ξ = 1, the large v asymptotic solution indicates that γ is finite at the interface
between the two fluids. Thus, we can conclude that the tip cavity solution is practically
given by its small v asymptote for v � 10−2 and by its large v asymptotic solution
for v � 102.

Figures 3–5 show qualitatively very similar distributions of the source density
and net-pressure in the tip cavity and their dependence on the permeability �. The
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numerical solution for the source density confirms that the source density has a
negative inverse square root singularity at the fracture tip. It also predicts a positive
singularity for the source density at the fluid interface ξ = 1, the physical nature of
which is not yet well understood. The source density is seen to increase monotonically
from negative infinity at the fracture tip to a positive infinity at the fluid interface.
The source density thus vanishes at a point along the cavity; this point separates the
cavity into two adjacent regions: one where the pore fluid is sucked into the cavity,
the other one where the fluid is leaking off the cavity. The position of the transition
point is moving from the tip to the interface as the permeability � increases from zero
to infinity. For small �, suction of the pore fluid occurs only in the very close vicinity
of the tip while leak-off takes place over most of the length of the cavity; for large
�, pore fluid is sucked into the cavity along most of the cavity length and is expelled
from the cavity only in the small region adjacent to the fluid interface between the
cavity and the rest of the crack. For small �, the source density distribution is very
similar to a sink/source pair, with the sink at the tip and the source at the interface;
in other words, the source density is almost zero over the most of the tip cavity and
singular with opposite sign at the two ends of the cavity. Comparison of figures 3(a)–
5(a) indicates that the zone of pore fluid suction adjacent to the fracture tip expands
with increasing velocity v for a fixed permeability �.

The dimensionless fluid pressure Π is negative at the tip and positive at the fluid
interface, see figures 3(b)–5(b). (According to the scaling, it corresponds to a fluid
pressure p smaller (greater) then the far-field pore pressure p0 at the tip of the fracture
ξ = 0 (at the fluid interface ξ = 1)). The pressure Π increases monotonically from a
negative tip value to a positive fluid interface value. Consider again the limiting case
of small and large permeability �. For large �, the pressure distribution inside the
cavity is almost uniformly zero (with very small variation from the tip to the interface),
which is indicative of a very slow cavity fluid flow. In contrast, the fluid pressure for
small � is characterized by a very steep gradient in the region adjacent to the tip and
a significant variation along the cavity. The solution in the small � limit can actually
be idealized as a pore fluid flow in the cavity embedded in an impermeable rock (no
fluid exchange between the rock and the cavity) from the source located at the tip
ξ = 0 to the sink located at ξ = 1. Comparison of figures 3(b)–5(b) indicates that the
range of variation of the pressure in the cavity diminishes with increase in velocity
v for a fixed permeability �; this feature of the solution is clearly manifested by the
v-dependence of the value of the net-pressure at the fluid interface ξ = 1.

The overall characteristics of the cavity solution, namely, the pressure at the fracture
tip Π (0) and at the fluid interface Π (1), and the strength of the effective dipole S (or
moment of the source density) are shown on figures 6 and 7, respectively. Figure 6
illustrates further the convergence of the numerical solution towards the large v and
small v asymptotic solutions, by showing the pressure at both extremities of the cavity
in terms of the two numbers v and η, rather than v and �. It can be seen that the
solution for v =102 compares very well with the large v asymptote shown in thick
dashed lines, whereas the solution for v = 10−3 and v =10−2 is practically identical
to the small v asymptote shown in thin dashed lines. Similar convergence can be
observed in the plot of the dipole strength S versus the parameter η for various
fixed values of v = 10−2, . . . , 102 (see figure 7). Thus, there is only a narrow range of
velocity v where the dipole strength S is appreciably different from both asymptotic
solutions. Figure 7 yet again reflects the asymptotic behaviour of the source density
at small and large η (or, equivalently, at small and large dimensionless permeability
� for a fixed v). Namely, the absolute value of the dipole strength evolves with η
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Figure 6. Dimensionless fluid pressure Π at the cavity ends (ξ = 0 and ξ = 1) versus the
number η =4�(v/π)1/2 in a semi-log scale for various values of the dimensionless velocity
v = 10−3, · · · , 102. The large and small velocity asymptotic solutions for the pressure are
shown in thick and thin dashed lines, respectively. (Note that the solution for v = 102 is
indistinguishable from the large velocity solution at ξ = 1, whereas solution for v = 10−3, 10−2

are practically identical to the small velocity asymptotic solution at both ξ =0 and ξ = 1 for
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(or �) from 0 (no fluid exchange between the cavity and the medium) to 2/3 (maximum
exchange).

Contour plots of the pore pressure field around the fracture tip cavity can be seen
in figure 8 (� = 0.1, v = 10−2) and in figure 9 (� = 0.1, v = 1). The pore pressure field
for v = 10−2 is shown in figure 8 at a scale large compared to the scale of the cavity;
it is like the solution of a moving dipole. (At the scale of the cavity, however, the
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of parameters �, v.

pore pressure field behaves as a stationary dipole solution.) For the case of moderate
velocity (v = 1), figure 9 shows that the solution at the cavity scale behaves as a dipole
moving in the negative direction along the x-axis.

Finally, contour plots of Π (0) and Π (1) as a function of � and v are given in
figures 10 and 11, respectively. The following conclusions regarding the dependence
of Π (0) and Π (1) on these governing parameters can be drawn from these plots.
For a permeability � � 10−2, Π (0) and Π (1) evolve monotonically with either
parameter when the other one is fixed. For example, Π (0) (Π(1)) increases (decreases)
monotonically with � when v is fixed, and Π (0) (Π(1)) increases (decreases)
monotonically with v when � is fixed. However, Π (0) and Π (1) have a rather peculiar
dependence on the governing parameters � and v, for small � � 10−2. Indeed, when
v is fixed and � � 10−2, Π (0) as a function of � has a global minimum at � ∼ 10−4

for small velocity, while it increases monotonically with � for large v. The pressure
at the interface Π (1) has the opposite behaviour; when v is fixed and � � 10−2, Π (1)
decreases monotonically with � for small v, while it has a global maximum at η ∼ 0.1
(η ≡ 4�

√
v/π) for large v. When � is fixed and small (� � 10−3), both Π (0) and Π (1)

have a global minimum at v ∼ 102.
One of the interesting features of the Π (1) contour plot in the parameter space

(�, v) is that it shows the existence of a region where Π (1) < 0 (around � ∼ 5 × 10−5,
v ∼ 10−2). The pore pressure in the vicinity of ξ ∼ 1 has to be even more negative
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for the fluid to flow out of the cavity. Hence, there exists a stagnation line, which
intersects the tip cavity and which is symmetric with respect to the fracture.

7.2. Cavitation limit

The model of fluid flow inside the tip cavity which is described in this paper ceases to
be applicable, however, when the fluid cavitates. Let pc denote the cavitation pressure
(the pressure at which fluids vaporize), and Πc the corresponding dimensionless
quantity

Πc =
pc − p0

p∗
. (7.1)

Since the cavitation pressure pc is a small negative value, negligible compared either
to the confining stress σ0 or the ambient pore pressure p0

Πc � −p0

p∗
= −κ2 p0

σ0

, (7.2)

where κ is the relevant dimensionless toughness for the semi-infinite crack (Garagash
& Detournay 2000)

κ = 2

(
ε�k

�h

)1/2

(7.3)

with �h = 12µV/E′ and ε = σ0/E
′. Furthermore, Πc ∼ −κ2, since p0 is usually of the

same order of magnitude as σ0.
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Since the fluid pressure is minimum at the fracture tip, the condition for cavitation
(if it takes place as the result of a continuous change in the problem parameters) will
first be reached at the tip. The cavitation criterion is thus simply

Π (0) � Πc. (7.4)

Using the condition (7.4), it is straightforward to define the domain in the (�, v)
parametric space of figure 10 when cavitation takes place (and the solution discussed
in this paper does not hold anymore). Since the dimensionless cavitation pressure Πc is
proportional to κ2 and since p0/σ0 = O(1), we can analyse the cavitation phenomenon
in terms of κ . According to figure 11, cavitation occurs in the very wide domain in
the plane (�, v) to the left of the contour line Π (0) = Πc for small toughness κ . As
the toughness κ increases, the ‘cavitation’ domain is pushed to smaller values of the
permeability � and with further increase of κ is eventually constrained to very small
values of the permeability � and large values of the velocity v (upper left-hand corner
in figure 10).

8. Concluding remarks
Modelling the tip of a fluid-driven fracture propagating in a saturated permeable

rock involves the description of three coupled processes: fracturing of the rock, fluid
flow inside the tip cavity and diffusion of pore fluid in the surrounding porous rock. In
this paper, we have been primarily concerned by the calculation of the fluid pressure
in the lag region. Hence, we have focused on a particular length scale, the size λ of
the tip cavity, out of a sequence of scales which can be described to include (starting
from the tip): (i) a process zone, a finite region where the irreversible processes of rock
failure linked to fracture propagation are taking place; (ii) a lag region which is filled
by pore fluid in the general case of a permeable rock; (iii) a region of rapid change
of the fluid pressure; (iv) a region where the fluid pressure is quasi-uniform. This
analysis is based on the assumptions that λ is not only large compared to the size of
the process zone, but also small compared to the size of the region characterized by
a rapid change of the fracturing fluid pressure. The first assumption implies that the
tip of the cavity behaves according to the square root asymptote of LEFM; hence,
the energy consumed in crack propagation can be subsumed in a single constant, the
toughness KIc. (An additional assumption is, however, involved in adopting w ∼ x1/2

over the whole tip cavity.) With the second assumption, the problem of the lag region
can be analysed as a cavity at the tip of a semi-infinite crack.

One of the main outcomes of this study is the relationship between Π (1), the fluid
pressure at the interface between the fracturing and the pore fluid, and the length λ
of the tip cavity. Another relation between Π (1) and λ can, in principle, be obtained
from considerations involving the intermediate scale characterized by a rapid change
of the fracturing fluid pressure. (Such a relationship was determined for the case of a
hydraulic fracture propagating in an impermeable medium by Garagash & Detournay
2000). The knowledge of both λ and Π (1) provides the pressure boundary condition
for the flow of fracturing fluid in the fracture and, therefore, is the key for constructing
the overall solution of a hydraulic fracture propagating in a permeable rock. Finally,
the fluid pressure at the tip of the crack, Π (0), can be used to calculate the conditions
at which cavitation takes place, which marks the breakdown of this solution.

Interest in this problem by E.D. was sparked by a discussion with Professor Jim
Rice in the summer of 1987. D.I.G. would like to acknowledge the partial support of
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this work by the Graduate School of the University of Minnesota in the form of a
Doctoral Research Fellowship (1997–1998).

Appendix A. Small velocity asymptotic case
A.1. Inversion of Cauchy singular integral equation

This Appendix outlines the inversion of the Cauchy singular integral equation (4.3) to
obtain an integral expression Υ (ξ ) as a function of Π (ξ ) that satisfies the boundary
conditions (4.4). Following Muskhelishvili (1977), we introduce the complex function

Φ(z) =
1

2πi

∫ 1

0

Υ (u) du

u − z
, (A 1)

where z is a complex variable and Υ (ξ ) is assumed to satisfy the Holder condition
on the interval ξ ∈ [0, 1]. The function Φ(z) is analytic in the complex plane with a
branch cut along the interval [0, 1] of the real axis. According to the Plemelj formulae
and (4.3),

Φ+(ξ ) − Φ−(ξ ) = Υ (ξ ), (A 2)

Φ+(ξ ) + Φ−(ξ ) =
1

πi

∫ 1

0

Υ (u) du

u − ξ
=

2�

i
Π (ξ ), (A 3)

where ξ ∈ [0, 1] and Φ±(ξ ) = Φ(ξ ± i 0) are the limiting values of Φ(z) on the interval
z ∈ [0, 1] approached from positive and negative imaginary z, respectively. Whereas
(A 2) provides the solution for Υ (ξ ) once Φ(z) is found, (A 3) defines a Hilbert
boundary value problem with general solution given by

Φ(z) = −�X(z)

π

∫ 1

0

Π (u) du

X+(u)(u − z)
+ X(z)Q(z). (A 4)

In the above, X(z) is the solution of the homogeneous Hilbert problem (Φ+(ξ ) +
Φ−(ξ ) = 0, ξ ∈ [0, 1]) and Q(z) is an arbitrary polynomial. Since Υ (ξ ) is bounded at
the endpoints (Υ (0) = Υ (1) = 0), Φ(z) is also bounded at z = 0 and at z =1. Hence,
out of four possible solutions, X(z) is given by

X(z) = C z1/2(1 − z)1/2, (A 5)

where C is an arbitrary constant. The function Υ (ξ ) is then deduced from (A 4) and
(A 2)

Υ (ξ ) = −2�

π
ξ 1/2(1 − ξ )1/2

∫ 1

0

Π (u)

u1/2(1 − u)1/2

du

u − ξ
+ ξ 1/2(1 − ξ )1/2Q(ξ ). (A 6)

Equation (4.3) provides an expression for the dimensionless pressure Π (ξ ) along the
ξ -axis (η = 0), not only in the cavity ξ ∈ [0, 1], but outside the cavity as well, provided
that ξ < 1/v (corresponding to the range of validity of (4.3)). Since, the pressure at
infinity (ξ → ∞) must approach the far-field value, the integral in (4.3) must converge
for ξ → ∞. This is possible only if the second term in (A 6) is absent. Consequently,
Q(ξ ) must be taken to zero in (A 6).

A.2. Sine series expansion of the kernel K(ξ, u)

Consider the transformation of coordinates ξ = cos2 ϕ, u = cos2 θ . The kernel K(ξ, u),
given by (4.8), then transforms as

K(cos2 ϕ, cos2 θ) = K̄(ϕ, θ) = K̄1 + K̄2, (A 7)
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where

K̄1 = ln

∣∣∣∣cos θ + cosϕ

cos θ − cos ϕ

∣∣∣∣ , K̄2 = ln

∣∣∣∣1 − cos(θ + ϕ)

1 + cos(θ − ϕ)

∣∣∣∣ . (A 8)

The following Fourier series (Porter & Stirling 1990) hold

K̄1 =

∞∑
n=1

4

2n − 1
cos[(2n − 1)ϕ] cos[(2n − 1)θ], (A 9)

1
2
ln[2(1 − cos ω)] = −

∞∑
n=1

1

n
cos nω. (A 10)

Thus, from (A 8) and (A 10),

K̄2 =

∞∑
n=1

2

n
((−1)n cos[n(θ − ϕ)] − cos[n(θ + ϕ)])

= −
∞∑

k=1

4

2k − 1
cos[(2k − 1)ϕ] cos[(2k − 1)θ] +

∞∑
k=1

2

k
sin(2kϕ) sin(2kθ). (A 11)

According to (A 7), (A 9) and (A 11), the kernel K̄(ϕ, θ) can then be expressed as a
double sine Fourier series

K̄(ϕ, θ) =

∞∑
k=1

2

k
sin(2kϕ) sin(2kθ). (A 12)

Appendix B. Large velocity asymptotic case
We consider the integral equation (2.28) for the large dimensionless velocity v � 1

I (ξ ; v, �) = Π (ξ ), (B 1)

where I (ξ ; v, �) denotes the convolutional integral

I (ξ ; v, �) =
1

2π�

∫ 1

0

γ (u) exp

[
v(ξ − u)

2

]
K0

(
v |ξ − u|

2

)
du. (B 2)

The asymptotic expression of I (ξ ; v, �) for large v is based on approximating the
modified Bessel function K0(ζ ) for ζ > ζ0, where ζ0 = O(1), by the first term of its
asymptotic expansion for large arguments (Abramowitz & Stegun 1964)

K0(ζ ) ∼
(

π

2ζ

)1/2

e−ζ , ζ > ζ0. (B 3)

The integral I (ξ ) in (B 2) is then written as the sum of three integrals

I = I− + I0 + I+, (B 4)

where I−, I0 and I+ denote the integrals over the subintervals [0, ξ − ε], [ξ − ε, ξ + ε]
and [ξ + ε, 1], respectively; ε is a small number defined as ε =2ζ0/v.

If ξ is a inner point of the (0, 1) interval and if γ is regular function at ξ , the
integral I0(ξ ) can be approximated as

I0(ξ ) � γ (ξ )

π�v

∫ ζ0

−ζ0

eζK0(|ζ |) dζ =
2ζ0

π�v
[K0(ζ0) cosh ζ0 + K1(ζ0) sinh ζ0]γ (ξ ), (B 5)
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while the integral I−(ξ ) and an upper bound of |I+(ξ )| can be estimated using the
asymptotic expression (B 3)

I−(ξ ) � 1

2�(πv)1/2

∫ ξ−ε

0

γ (u)

(ξ − u)1/2
du � 1

2�(πv)1/2

∫ ξ

0

γ (u)

(ξ − u)1/2
du, (B 6)

|I+(ξ )| �
γm

�v(2π)1/2

∫ v(1−ξ )/2

ζ0

e−2ζ

ζ 1/2
dζ =

γm

2�v

[
erf(v(1 − ξ ))1/2 − erf(2ζ0)

1/2
]
. (B 7)

Hence,

|I+(ξ )| < γm

2�v
, (B 8)

where γm = max |γ (u)| on the interval u ∈ (ξ, 1).
If γ is singular at ξ = 1, let ξ∗ ∈ (ξ, 1) be such that γ (u) = O(1) for u ∈ (ξ, ξ∗). After

splitting the integral I+ over the two subintervals (ξ, ξ∗) and (ξ∗, 1), an upper bound
of |I+| is then given by

|I+| �
γ∗

�v(2π)1/2

∫ v(ξ∗−ξ )/2

ζ0

e−2ζ

ζ 1/2
dζ +

|Υ (ξ∗)|
�v3/2

e−v(ξ∗−ξ )

[π(ξ∗ − ξ )]1/2
, (B 9)

where γ∗ = max |γ (u)| on the interval u ∈ (ξ, ξ∗). Also, |Υ (ξ∗)| represents the total fluid
volume exchanged between the porous medium and the cavity over the interval (ξ∗, 1)
and must therefore be finite. Hence, the second term in the sum (B 9) is exponentially
small and the order of I+ is given by the first term.

In summary, the dependence of the integrals on v are: I− = O(1/v1/2), I0, I+ =
O(1/v). Only the leading term I− therefore needs to be retained in the integral (B 4)
at large v; hence,

I (ξ ) � 1

2�(πv)1/2

∫ ξ

0

γ (u) du

(ξ − u)1/2
. (B 10)

It follows that the integral equation (B 2) takes the form

2

π

∫ ξ

0

γ (u) du

(ξ − u)1/2
= ηΠ(ξ ), (B 11)

where

η = 4�

(
v

π

)1/2

. (B 12)

Appendix C. Numerical algorithm for the tip cavity solution
The numerical procedure for solving the integral equation (6.4) with the constraint

(6.6) in terms of the ‘regularized’ source density γr and the tip pressure Π (0) is
outlined here. The integration interval ξ ∈ [0, 1] is divided into N contiguous elements
(aj , aj+1), j = 1, . . . , N with a1 = 0 and aN+1 = 1. Let ξj , j =1, . . . , N denote the
midpoints of these segments. The source density γr (ξ ) is then defined as a piecewise
constant function over these elements

γr (ξ ) =

{
γj if ξ ∈ (aj , aj+1),

0 elsewhere.
(C 1)
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The expression (6.3) for the pressure in terms of the source density evaluated at the
midpoint ξi of the ith element takes the form

Πi = Π (0) +

N∑
j=1

φ
p
ijγj , (C 2)

where

φ
p
ij = 2

[
−ξ

−1/2
i (aj+1 − aj ) + 2

(
a

1/2
j+1 − a

1/2
j

)]
Dij

+ 2
[
−ξ

−1/2
i (ξi − ai) + 2

(
ξ

1/2
i − a

1/2
i

)]
δij . (C 3)

In (C3), δij is the Kronecker-delta and Dij is defined as Dij = 1 if j < i, and Dij = 0
if j � i.

Substituting (C 1) into (6.4) and (6.6) and selecting the element midpoints as
collocation points (while taking into account (C 2)) yields the following system of
N + 1 linear equation to be solved for the N + 1 unknowns γj , j = 1, . . . , N, and
Π (0)

Π (0) +

N∑
j=1

(
φ

p
ij − φij

)
γj = Πi

t ,

N∑
j=1

(aj+1 − aj )γj = 1,




(C 4)

where Πi
t = Πt (ξi) and

φij =

∫ aj+1

aj

Πs(ξi − u, 0) du = −(π�v)−1[f (bi j+1) − f (bij )], bij = 1
2
v(ξi − aj ),

(C 5)

The function f in (C 5) is expressed in terms of the modified Bessel functions of the
second kind, K0 and K1

f (ξ ) =

∫ ξ

exp(u)K0(|u|) du = exp(ξ )[ξK0(|ξ |) + |ξ |K1(|ξ |)].

After solving the linear system of equations (C 4) for the γi terms and Π (0), the nodal
pressure Πi terms are calculated from (C 2).
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